Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Lidar and radar observations of persistent atmospheric wave activity in the Antarctic atmosphere motivate investigation of generation of acoustic‐gravity waves (AGWs) by vibrations of ice shelves and exploiting their possible ionospheric manifestations as a source of information about the ice shelves' conditions and stability. A mathematical model of the waves radiated by vibrations of a finite area of the lower boundary of the atmosphere is developed in this paper by extending to AGWs an efficient, numerically exact approach that was originally developed in seismology and underwater acoustics. The model represents three‐dimensional wave fields as Fourier integrals of numerical or analytical solutions of a one‐dimensional wave equation and accounts for the source directionality, AGW refraction and diffraction, and the wind‐induced anisotropy of wave dissipation. Application of the model to the generation of atmospheric waves in Antarctica by free vibrations of the Ross Ice Shelf reveals a complex three‐dimensional structure of the AGW field and elucidates the impact of various environmental factors on the wave field. The intricate variation of the wave amplitude with altitude and in the horizontal plane is shaped by the spatial spectrum of the ice surface vibrations and the temperature and wind velocity stratification from the troposphere to the mesosphere. It is found that the waves due to the low‐order modes of the free oscillations of the Ross Ice Shelf, which have periods of the order of several hours, can transport energy to the middle and upper atmosphere in a wide range of directions from near‐horizontal to near‐vertical.more » « less
-
Dynasonde approach to ionospheric radio sounding capitalizes on high precision of physical parameters and rich statistics of recognized echoes phase-based methods can provide. As has been recently demonstrated, the Dynasonde profiles of the electron density and of the horizontal gradients, complemented with profiles of the Doppler speed, carry comprehensive quantitative information about Atmospheric Gravity Waves, a ubiquitous feature of the space weather that has become an important objective of atmospheric modeling. Being combined into a time series, and without additional processing, the profiles allow visualization of the time fronts of the Traveling Ionospheric Disturbances (TIDs). They also provide high-resolution input data for calculating the complete set of parameters (both vertical and horizontal) of TID activity in the upper atmosphere between the base of the E layer and the maximum of the F layer. Application of the Lomb-Scargle periodogram technique to the tilt data provides unique insight into the dynamics of spectral composition of the TIDs. A similar technique applied to longer time series allows determining characteristics of thermospheric tides. Single sounding sessions allow observations of ionospheric manifestations of acoustic waves produced by ground-based sources. All the mentioned products of the Dynasonde data analysis require a common, standard ionogram mode of radar operation. Therefore, information about standard parameters of the ionospheric E, F regions, possibility to obtain vector velocities characterizing movement of plasma contours, and quantitative parameters of the km-scale irregularity spectrum are not lost and contribute into comprehensive description of wave activity in the thermosphere-ionosphere system.more » « less
An official website of the United States government
